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Abstract We give evidence of the possibility to perform implicit induction-based proofs inside certified reasoning environments, as that provided by the Coq
proof assistant. This is the first step of a long term project focused on 1) mechanically certifying implicit induction proofs generated by automated provers like
Spike, and 2) narrowing the gap between automated and interactive proof techniques by devising powerful proof strategies inside proof assistants.

Motivations

Implicit induction proof techniques allow for automated reasoning on induc-
tive properties of equational specifications. Up to now, implicit induction theo-
rem provers, as Spike [1], have been successfully used in treating non-trivial
case studies, for instance, the validation of the JavaCard Platform [1] and of
an ABR conformance algorithm [6]. Spike proofs are highly automated; in [1],
almost half of the JavaCard bytecode instructions have been checked com-
pletely automatically in a reasonable time. Unfortunately, their implementation
is error-prone and their certification still stands for a challenge.

On the other hand, proof assistants like Coq [9] are mostly interactive. Their
strength lies in the implementation of the proof checker, small enough to be
readable and verified by humans. Any proof validated by such proof checkers
is therefore highly reliable.

Basically, best of both worlds can be reached if automated proofs are in-
tegrated into interactive proof assistants. This can be done in two different
ways: i) the inference system of the automated prover can be developed and
certified into the proof assistant, or ii) a proof in the formalism of the proof as-
sistant can be produced using a trace of the automated prover. In this work,
we adopt the second approach.

Previous attempts to validate Spike proofs using Coq have been done by
Courant [4] and Kaliszyk [5]. Instead of translating Spike proofs using explicit
induction techniques built in Coq as in [4, 5], the implicit induction principle
should be validated before being directly applied. Our approach would allow
to build a one-to-one translation for any Spike proof.

Example

Spike proof
function symbols
0 : nat
S : nat→ nat
+ : nat nat→ nat

axioms

(1) 0 + y = y
(2) S(x) + y = S(x + y)

symbol precedence
0 <F S <F +

Spike preserves the minimal counter-examples in the derivations, made of
couples (E,H), where E contains conjectures to be refuted, and H formulas
which do not contain minimal counter-examples.

Spike proof derivation of x + 0 = x:

({x + 0 = x}, ∅)
`case_variable ({0 + 0 = 0, S(x′) + 0 = S(x′))}, ∅)
`rewrite ({0 = 0, S(x′ + 0) = S(x′))}, {x + 0 = x})
`delete ({S(x′ + 0) = S(x′))}, {x + 0 = x})
`injection ({x′ + 0 = x′)}, {x + 0 = x})
`subsumption

x 7→x′
(∅, {x + 0 = x})

At the end, no conjecture contains minimal counter-examples, therefore all
conjectures encountered during the proof, including x + 0 = x, are true.

Coq translation
nat and the function symbols 0, S, + are already defined in Coq, closely

following the previous specification. The Coccinelle library is used to rep-
resent abstract terms and formulas (denoted by 〈F 〉), and orders on them,
respectively ≺rpo and ≺≺rpo (multiset extension of ≺rpo). In order to validate
Spike proofs, Coccinelle was extended with interesting properties of ≺≺rpo
(well-foundedness, monotonicity, decidability).

Using the Spike proof, we can construct in Coq a set F of conjectures to-
gether with their abstract representation.

F =


λx.(x + 0 = x, 〈x + 0 = x〉),
λx.(S(x) + 0 = S(x), 〈S(x) + 0 = S(x)〉),
λx.(S(x + 0) = S(x), 〈S(x + 0) = S(x)〉)


Then, we state and prove the following lemma, where ((x, y))l = x and

((x, y))r = y are the left and right projections, respectively.
Lemma (counter-example non-minimality).

∀F ∈ F ,∀x,¬(Fx)l
→ ∃F ′ ∈ F ,∃y,¬(F ′y)l ∧ (F ′y)r ≺≺rpo (Fx)r

Proof. (using hints from the Spike proof). By case analysis on elements of F :
•F ≡ λx.(x + 0 = x, 〈x + 0 = x〉)

Let x : nat and assume ¬(Fx)l ≡ ¬(x + 0 = x). By cases on x:
– x 7→ 0

0 + 0 = 0
 ≡(1) 0 = 0 which is true, so the implication is trivially verified.

– x 7→ S(x′)
S(x′) + 0 = S(x′)

 ≡(2) S(x′ + 0) = S(x′). For F ′ := λx.(S(x + 0) =
S(x), 〈S(x + 0) = S(x)〉) and y := x′, we have the result because
(F ′y)r ≡ 〈S(x′ + 0) = S(x′)〉 ≺≺rpo 〈S(x′) + 0 = S(x′)〉 ≡ (Fx)r.

•F ≡ λx.(S(x) + 0 = S(x), 〈S(x) + 0 = S(x)〉) S(x) + 0 = S(x)
��rpo
 S(x+ 0) =

S(x). We take F ′ := λx.(S(x + 0) = S(x), 〈S(x + 0) = S(x)〉) ∈ F .
•F ≡ λx.(S(x + 0) = S(x), 〈S(x + 0) = S(x)〉)
S(x+0) = S(x) ≡ x+0 = x. In this case, F ′ := λx.(x+0 = x, 〈x+0 = x〉) ∈ F .

The lemma permits us to prove that all formulas from F are true.
Theorem (all true).

∀F ∈ F ,∀x, (Fx)l

and, trivially,
∀x, x + 0 = x

Proofs are done without performing any explicit induction operation.

Future Works

It seems possible to avoid the use of the excluded middle axiom in order to build proofs constructively. In this way, the user would be able to produce ‘implicit
induction’-style proofs into Coq; the lemma, the theorem and the computation details involving order comparisons could be hidden. We also plan to develop an
automated tactic for Coq, using sets of predefined specifications over usual data structures (nat, list, etc.).
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